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МНОГОСЕТОЧНЫЕ ЛАГРАНЖЕВЫЕ КРИВОЛИНЕЙНЫЕ ЭЛЕМЕНТЫ В ТРЕХМЕРНОМ АНАЛИЗЕ  
КОМПОЗИТНЫХ ЦИЛИНДРИЧЕСКИХ ПАНЕЛЕЙ И ОБОЛОЧЕК* 

 
Предложены процедуры построения в локальных декартовых системах координат криволи-

нейных лагранжевых двухсеточных конечных элементов (ДвКЭ) и сложных многосеточных конеч-
ных элементов (МнКЭ) для расчета трехмерных упругих композитных цилиндрических панелей и 
оболочек с различными коэффициентами наполнения. Расчеты панелей волокнистой структуры 
показывают, что максимальные  эквивалентные напряжения и перемещения базовых и двухсе-
точных (многосеточных) дискретных моделей панелей отличаются на 1–8 %. Реализация метода 

конечных элементов для двух- и многосеточных дискретных моделей панелей требует в 3 410 10  

раз меньше  объема памяти ЭВМ и в 2 310 10 раз меньше временных затрат, чем для базовых. 
Ключевые слова: композиты, упругость, цилиндрические оболочки и панели, сложные 

многосеточные и двухсеточные лагранжевые криволинейные элементы. 
 

A.D. Matveev, A.N. Grishanov 
 

MULTIGRID LAGRANGIAN CURVILINEAR ELEMENTS IN THE THREE-DEMENSIONAL  
ANALYSIS OF THE COMPOSITE CYLINDRICAL PANALS AND SHELLS 

 
The procedures for constructing the curvilinear Lagrangian double-grid finite elements (DGFE) and 

complex multigrid finite elements (MGFE) in the local Cartesian systems to calculate the elastic composite 
cylindrical panels and shells are offered. The calculations of the fibrous structure panels demonstrate that 
the maximum equivalent tension and displacement of the basic and double-grid (multigrid) discrete panel 
models  differ by 1–8 %. The implementation of the finite element method for two- and multigrid discrete 
models of panels requires 43 1010   times less of the computer's memory and 32 1010   times less of tem-
poral costs than for the basic model. 

Key words: composites, elasticity, cylindrical shells and panels, complex multigrid and double-grid 
Lagrangian curvilinear elements. 

 
 
Введение. Как известно, общий недостаток теорий деформирования упругих композитных 

цилиндрических панелей и оболочек заключается в том, что в их основе лежат гипотезы, которые 
недостаточно точно отражают законы перемещений и напряжений. Поэтому уравнения этих теорий  
порождают приближенные решения с неустранимой погрешностью. Кроме того, существующие 
теории  не учитывают сложный характер закреплений, например частичное закрепление по  тол-
щине толстых панелей и оболочек, не всегда достаточно точно описывают по методу конечных 
элементов (МКЭ) с применением мелких разбиений деформирование панелей, оболочек, имеющих 
локальные нагружения. 

В данной работе изложены процедуры построения в локальных декартовых системах коорди-
нат криволинейных лагранжевых ДвКЭ и сложных МнКЭ, которые используются для расчета (по МКЭ 
с применением мелких разбиений) линейно упругих трехмерных композитных цилиндрических пане-
лей и оболочек с различными коэффициентами наполнения. Лагранжевые ДвКЭ и сложные МнКЭ 
формы прямоугольного параллелепипеда, применяемые для анализа упругих тел неоднородной 
структуры, изложены в работах [1–3]. Процедуры построения трехмерных криволинейных ДвКЭ в ло-
кальных декартовых системах координат с применением известных  интерполяционных полиномов  
1-го, 2-го и 3-го порядков рассмотрены в работах [4, 5]. 

Предлагаемые криволинейные лагранжевые элементы проектируются на основе базовых 
дискретных моделей, которые учитывают неоднородную (микронеоднородную) структуру трехмер-
ных композитных панелей и оболочек и имеют очень  высокую размерность. Для построения ла-
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Т е х н и ч е с к и е  н а у к и  

 

76 
 

гранжевых ДвКЭ применяем две вложенные трехмерные криволинейные сетки: мелкую и крупную. 
Мелкая сетка порождена базовым разбиением ДвКЭ, которое учитывает его неоднородную струк-
туру. На базовом разбиении строим функционал полной  потенциальной энергии ДвКЭ в матричной 
форме по МКЭ [6, 7]. На мелкой сетке выделяем криволинейную крупную сетку, на которой опреде-
ляем полиномы Лагранжа. Показаны две процедуры построения в локальных декартовых  системах 
координат трехмерных криволинейных лагранжевых ДвКЭ. 

Согласно первой процедуре, в функционале полной потенциальной энергии ДвКЭ aV  с по-

мощью полиномов Лагранжа (построенных на крупной сетке) выражаем узловые перемещения 
мелкой сетки через узловые перемещения крупной. Затем, минимизируя функционал по узловым 
перемещениям крупной сетки, получаем формулы для вычисления матрицы жесткости и вектора 

узловых сил криволинейного лагранжевого ДвКЭ aV . 

Суть второй процедуры заключается в следующем. Вначале область лагранжевого ДвКЭ bV  

представляем криволинейными шестигранными суперэлементами, которые построены с помощью 

метода конденсации [6, 7] на базовом разбиении ДвКЭ bV . Вершины суперэлементов совпадают с 

узлами крупной сетки ДвКЭ bV . Функционал полной потенциальной энергии, составленный для 

всех суперэлементов, представляем в матричной форме. В функционале ДвКЭ bV  с помощью по-

линомов Лагранжа (построенных на крупной сетке) узловые перемещения суперэлементов выра-
жаем через узловые перемещения крупной сетки. Минимизируя функционал энергии по узловым 
перемещениям крупной сетки, получаем формулы для вычисления матрицы жесткости и вектора 

узловых сил криволинейного лагранжевого ДвКЭ bV . 

Показана процедура построения криволинейных лагранжевых сложных МнКЭ, которые про-
ектируются с применением лагранжевых криволинейных ДвКЭ. При построении криволинейных ла-
гранжевых ДвКЭ и сложных МнКЭ используем однородные криволинейные односеточные конечные 
элементы (КЭ) 1-го порядка, которые построены в работах [4, 5] в локальных декартовых системах 

координат. На рисунке 1 представлен односеточный однородный криволинейный КЭ eV  1-го поряд-

ка, где e  – угол раствора КЭ eV ; 1111 zyxO  – локальная декартовая система координат; 11zOy  – 

плоскость симметрии; cd  – ось цилиндрической панели, оболочки; e
zh  – толщина; e

yh  – длина КЭ 

eV ; eR1 , eR2  – радиусы нижней и верхней поверхностей КЭ eV , узлы отмечены точками (8 узлов). 

Прямоугольники размерами 
e
y

e
z hh   есть боковые грани, криволинейные прямоугольники – торце-

вые грани КЭ eV . Форма КЭ eV  есть прямая призма высотой 
e
yh . 

 

 
 

Рис. 1. Односеточный КЭ eV  1-го порядка 
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Поскольку при мелком разбиении угол раствора e  криволинейного КЭ eV  мал (рис. 1), то 

его форма мало отличается от формы прямоугольного параллелепипеда. В связи с этим при по-

строении по МКЭ функций перемещений для однородных криволинейных КЭ eV  1-го, 2-го и 3-го 

порядков используем соответственно известные интерполяционные полиномы 1-го, 2-го и 3-го по-
рядков [6, 7] и уравнения трехмерной задачи теории упругости, записанные в локальных декарто-

вых системах координат 111 zyOx  данных КЭ. Таким образом, в КЭ eV  реализуется трехмерное 

напряженное деформированное состояние. Поскольку при построении лагранжевых криволинейных 

ДвКЭ и сложных МнКЭ используем конечные элементы eV  1-го порядка (рис. 1), то ДвКЭ и сложные 

МнКЭ также описывают трехмерное напряженное состояние в цилиндрических панелях и оболоч-
ках. Матрицы жесткости и векторы узловых сил криволинейных ДвКЭ и сложных МнКЭ определяем 
в локальных декартовых системах координат, а системы уравнений МКЭ для дискретных моделей 
оболочек и панелей – в глобальных декартовых системах координат. Связь между локальными и 
глобальными системами координат осуществляем с помощью матриц вращений [6], которые опре-
деляем только для узловых перемещений ДвКЭ и сложных МнКЭ. 

1. Криволинейные лагранжевые ДвКЭ. Изложим две процедуры построения композитных 

трехмерных криволинейных лагранжевых ДвКЭ на примере лагранжевых ДвКЭ aV , bV  3-го порядка, 

при построении которых используем полиномы Лагранжа 3-го порядка (рис. 2), где  Oxyz  ( O ) – 

локальная декартовая (криволинейная) система координат; оси Oy , O  совпадают; a
zh  – толщина; 

a
yh  – длина ДвКЭ aV ; 1R  – радиус нижней поверхности; a  –  угол раствора ДвКЭ aV  ( bV ). 

 

 
 

Рис. 2. ДвКЭ aV  ( bV ) 

 

Считаем, что угол a  мал, т.е. криволинейная форма ДвКЭ aV  мало отличается от формы 

прямоугольного параллелепипеда. Пусть между компонентами композитного ДвКЭ aV  связи иде-

альны. Не теряя общности суждений, считаем, что ДвКЭ aV  армирован волокнами, направленными 

вдоль оси Oy . Область ДвКЭ aV  представляем базовым разбиением aR , которое состоит из од-

нородных односеточных КЭ eV  1-го порядка (рис. 1) с характерными размерами 
e
z

e
y

e
x hhh  , где 

Me ,...,1 ; M – общее число КЭ eV  базового разбиения aR . Отметим, что поскольку функции 

перемещений, напряжений и деформаций компонентов КЭ eV  удовлетворяют закону Гука и соот-

ношениям Коши, которые отвечают трехмерной задаче теории упругости, то в области ДвКЭ aV  

реализуется трехмерное напряженное состояние. На рисунке 3 сечение ДвКЭ aV  представлено 

узловой сеткой базового разбиения, сечения волокон закрашены. 
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Рис. 3. Сечение ДвКЭ aV  ( bV ) 

 

Базовое разбиение aR  учитывает неоднородную структуру ДвКЭ aV  и порождает мелкую 

ортогональную криволинейную сетку ah . Отметим, что базовые разбиения aR  двухсеточных КЭ 

aV , из которых состоит панель (оболочка), образуют базовую дискретную модель панели (оболоч-

ки). Пусть consthh e
e
z

e
y   , Me ,...,1 , т.е. по осям O  и O  шаги мелкой сетки ah  и углы 

раствора КЭ eV  постоянны. На мелкой сетке ah  определяем крупную ортогональную узловую сетку 

aH . Узлы сетки aH  на рисунке 2 отмечены точками (64 узла). Для узлов крупной сетки введена 

целочисленная система координат ijk  размерности 321 nnn  . Для рисунка 2 имеем 

4321  nnn , узел ),,( kjip  имеет целочисленные координаты 2i , 4j , 4k . 

1.1. Построение полиномов Лагранжа для криволинейных ДвКЭ. Рассмотрим построение 
в декартовой системе координат Oxyz  (рис. 2) полиномов Лагранжа, которые строим на крупной 

сетке aH  и с помощью которых определяем функции перемещений для ДвКЭ aV . Важно отметить 

следующее. Функционал aW  полной потенциальной энергии ДвКЭ aV  определяем, используя КЭ 

первого порядка базового разбиения aR , т. е. функционал aW  определяем на мелкой сетке ah . С 

помощью полиномов Лагранжа (построенных на крупной сетке aH ) узловые перемещения мелкой 

сетки ah  выражаем через узловые перемещения крупной сетки aH , т. е. полиномы Лагранжа ис-

пользуем для понижения размерности функционала aW .  

Пусть точка 0M  ДвКЭ aV  имеет декартовы координаты zyx ,,  и криволинейные координаты 

 ,, . Поскольку оси Oy  и O  совпадают (см. рис. 2), то y . Для криволинейной координаты 

  точки 0M  имеем R  , где R  – радиус цилиндрической поверхности, на которой лежит точка 

0M ;   – угол, отвечающий координате  , a 0  (см. рис. 2). Поскольку угол a  мал, то 

x . Принимаем x . Пусть ось *O  проходит через точку 0M  и совпадает с радиусом внут-

ренней цилиндрической поверхности ДвКЭ aV . Пусть   – угол между осями *O  и Oz , 

]2/,2/[ aa   . Тогда  cosz . Поскольку угол a  мал, то 1cos  , и поэтому считаем, 

что z . Итак, декартовы координаты x , y , z  и криволинейные координаты  ,  ,   связаны 

соотношениями  
 

                                                x ,  y ,  z .                                                                     (1) 

 

Для узла ),,( kjip  крупной сетки aH  ДвКЭ aV  в силу (1) имеем соотношения 
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                                                iix  ,  jjy  ,  kkz  ,                                                               (2) 

 

где i , j , k  и ix , jy , kz  – координаты узла p  соответственно в системах координат O  и 

Oxyz , 1,...,1 ni  , 2,...,1 nj  , 3,...,1 nk  . 

 Базисную функцию ijkN  узла ),,( kjip  крупной сетки aH  ДвКЭ aV  в декартовой системе 

координат Oxyz  представляем в форме 

 

                                           )()()( zLyLxLN kjiijk  ,                                                                 (3) 

 

где )(xLi , )(yL j , )(zLk  – полиномы Лагранжа, имеющие вид [6] 
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где ix , jy , kz  – координаты узла ),,( kjip . 

Для точек с координатами  , i , n , лежащих на цилиндрической поверхности радиуса R , 

имеем соотношения R  , Rii   , Rnn   , где  , , n  – углы, отвечающие соответ-

ственно координатам  , i , n . С учетом, что x , iix  , nnx  , для полинома Лагранжа 

)(xLi  получаем 

 

                                
 









11

,1,1

)()(
n

inn ni

n
i

n

inn ni

n
i L

xx

xx
xL




 .                                                (4) 

 
 

Следует отметить, что полином Лагранжа )(xLi  по координате x  имеет одинаковый вид (4) 

для точек с координатами  , i , n , лежащих на цилиндрических поверхностях с любыми радиу-

сами R , причем полином )(xLi , согласно (4), зависит только от угловой координаты  . Подстав-

ляя (4) в (3), получим 
 

                                                  )()()( zLyLLN kjiijk  . 

 

 Учитывая (2), (4), полиномы Лагранжа, построенные для криволинейной крупной сетки aH  

ДвКЭ aV , представим в виде 
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 Функции перемещений au , av , aw  ДвКЭ aV  запишем в форме 
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где  ijku , ijkv , ijkw  – значения функций u , v , w  для узла ),,( kjip  сетки aH . 

i



Т е х н и ч е с к и е  н а у к и  

 

80 
 

Тройке целых чисел kji ,,  узла ),,( kjip  определим целое число   и введем обозначения: 

ijkNN  , ijk
u uq  , ijk

v vq  , ijk
w wq  , где 1,...,1 ni  , 2,...,1 nj  , 3,...,1 nk  , 0,...,1 n ; 

3210 nnnn   (на рис. 2 4321  nnn , 640 n ). Тогда для функций перемещений au , av , aw  

получаем 
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где uq , vq , wq , N  – перемещения и функция формы  -го узла сетки aH . 

1.2. Первая процедура построения криволинейных лагранжевых ДвКЭ. Основные положе-

ния первой процедуры рассмотрим на примере построения криволинейного лагранжевого ДвКЭ aV
 
 

3-го порядка (рис. 2). Порядок лагранжевого ДвКЭ равен порядку полиномов Лагранжа (вида (5), см. 

п. 1.1), построенных на криволинейной крупной сетке ДвКЭ. Пусть для ДвКЭ aV  построены базовое 

разбиение aR , крупная сетка aH  и функции перемещений (6) с помощью полиномов Лагранжа. 

Обозначим через Tw
n

wv
n

vu
n

u
a qqqqqq },...,,,...,,,...,{

000
111  вектор узловых перемещений крупной 

сетки aH , т.е. узловых перемещений ДвКЭ aV , отвечающий декартовой системе координат Oxyz  

(рис. 2). Пусть ][ eK  – матрица жесткости, eP  и e – векторы узловых сил  и перемещений КЭ eV  

построены в декартовой системе координат Oxyz  [4, 5]. Полную потенциальную энергию aW  для 

базового разбиения aR  ДвКЭ aV  запишем в матричной форме 
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где  M – общее число КЭ eV .  

Используя (6), узловые перемещения вектора e  выражаем через узловые перемещения 

вектора a . В результате построим равенство 

 

                                                         a
a
ee A  ][ ,                                                                               (8) 

 

где ][ a
eA  – прямоугольная матрица. 

Подставляем (8) в функционал (7) и, минимизируя его, получаем 
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где ][ aK  – матрица жесткости; aF  – вектор узловых сил лагранжевого ДвКЭ aV . 

1.3. Вторая процедура построения криволинейных лагранжевых ДвКЭ. Вторую процедуру, 

не теряя общности суждений, рассмотрим на примере построения лагранжевого ДвКЭ bV  3-го поряд-

ка, который имеет размеры, форму и неоднородную структуру и расположен в локальной декартовой 

системе координат Oxyz , как и лагранжевый ДвКЭ aV  (рис. 2). При построении ДвКЭ bV  используем 

мелкую ah  и крупную aH  сетки, базовое разбиение aR  и функции перемещений au , av , aw          

ДвКЭ aV  (см. п. 1.2).  В данном случае a  есть вектор узловых перемещений ДвКЭ bV . На базовом 
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разбиении aR  ДвКЭ bV , используя метод конденсации [6], строим криволинейные суперэлементы 

s
eG  с характерными размерами e

z
e
y

e
x hhh 333  , которые покрывают всю область ДвКЭ bV , где 

Ne ,...,1 , N – общее число суперэлементов (для рис. 2 27N ). При этом вершины суперэле-

ментов совпадают с узлами крупной сетки aH  ДвКЭ bV . Полную потенциальную энергию sW  су-

перэлементов s
eG  запишем в виде 
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где ][ s
eK , s

eP , s
e  – матрица жесткости, векторы узловых сил и перемещений суперэлемента s

eG , 

которые определяем в декартовой системе координат Oxyz  ДвКЭ bV .  

Используя (6), между векторами s
e , a  установим связь 
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s
e A  ][ ,                                                                             (10) 

 

где ][ s
eA  – прямоугольная матрица; a  – вектор узловых неизвестных ДвКЭ bV . 

Подставляем (10) в функционал (9) и, минимизируя его, получаем 
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где ][ bK  – матрица жесткости и bF  – вектор узловых сил  лагранжевого ДвКЭ bV . 

Замечание 1. Как показывают расчеты, лагранжевые ДвКЭ bV  (построенные по 2-й процеду-

ре) порождают более точные решения, чем лагранжевые ДвКЭ aV  (построенные по 1-й процедуре). 

С другой стороны, реализация 2-й процедуры связана с обращением матрицы высокого порядка, 
что увеличивает временные затраты на построение сеточных решений. 

Замечание 2. Криволинейные композитные лагранжевые ДвКЭ n -го порядка ( n – целое, 1n ) с 
неоднородной и микронеоднородной структурой строим по процедурам, которые аналогичны процеду-
рам п. 1.2 и 1.3. 

Замечание 3. При построении однородных криволинейных лагранжевых односеточных КЭ n-
го порядка, имеющих такую же геометрическую форму, как лагранжевые ДвКЭ (рис. 2), используем 
функции перемещений вида (6), которые построены с помощью полиномов Лагранжа n-го порядка 
вида (5). 

 2. Криволинейные лагранжевые сложные МнКЭ. Основные положения процедуры по-
строения криволинейного сложного композитного многосеточного элемента рассмотрим на примере 

сложного МнКЭ mV  3-го порядка, расположенного в локальной декартовой  системе координат 

Oxyz  (рис. 4). Порядок МнКЭ mV  равен порядку полиномов Лагранжа (вида (5), см. п. 1.1), постро-

енных на криволинейной крупной сетке МнКЭ mV . Узлы крупной сетки mH  МнКЭ mV  на рисунке 4 от-

мечены точками (64 узла). Пусть область МнКЭ mV  (рис. 4) представлена криволинейными  лагранже-

выми ДвКЭ b
nV  3-го порядка (рис. 5), построенными по алгоритмам п. 1.2 и 1.3. Базовое разбиение 

ДвКЭ b
nV , состоящее из КЭ eV  1-го порядка с характерными размерами 

e
z

e
y

e
x hhh   (см. рис. 1), учи-

тывает неоднородную структуру ДвКЭ b
nV , т. е. сложного МнКЭ mV . Двухсеточный КЭ b

nV  распо-

ложен в локальной декартовой системе координат 1111 zyxO  с характерными размерами 
n
z

n
y

n
x bbb  , где n

n
e
x

n
x Rhb 19  , 

e
y

n
y hb 9 , e

z
n
z hb 9 , nR1 – радиус нижней поверхности ДвКЭ 
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b
nV , n – угол раствора ДвКЭ b

nV , n
z

m
z bh 3  – толщина, n

y
m
y bh 3  – длина МнКЭ mV , Nn ,...,1 , 

N  – общее число ДвКЭ b
nV , для рисунка 4 N=27. Пусть constbb n

n
z

n
y ,, , Nn ,...,1 . Форма 

сложного МнКЭ mV  есть прямая призма высотой m
yh . Отметим, что МнКЭ mV  включает некоторое 

множество криволинейных мелких и крупных вложенных сеток ДвКЭ b
nV  и крупную сетку mH . 

Функции перемещений mu , mv , mw , построенные на сетке mH  с помощью полиномов Лагранжа 

(см. п. 1.1) 3-го порядка, представляем в виде 
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где m
iN  – базисная функция i -го узла сетки mH ; m

iu , 
m

iv , 
m

iw – значения перемещений в i -м уз-

ле сетки mH  в декартовой системе координат Oxyz . 

Пусть m  – вектор узловых перемещений (размерности 192) крупной сетки mH  в декартовой 

системе координат Oxyz . Пусть ось 11 yO  локальной декартовой системы координат 1111 zyxO  

ДвКЭ b
nV  (рис. 5) параллельна оси Oy  локальной декартовой системы координат Oxyz  МнКЭ mV  

(рис. 4), и пусть между осями 11xO  и Ox  угол равен n . 

 

  
Рис. 4. Сложный МнКЭ mV                                                   Рис. 5. ДвКЭ b

nV  

 

Векторы 1
n , b

n  узловых перемещений лагранжевого ДвКЭ b
nV , отвечающие соответственно 

системам координат 1111 zyxO  и Oxyz , представим в виде 
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где ][ b
nT  – матрица вращений размерности 192192 , которая имеет структуру [6], 
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здесь подматрицы имеют размерность 6464 ; ][ 0M  – нулевая и ][ eM  – единичная матрицы, 

][cos][ 1 en MM  , ][sin][ 2 en MM  . 

 Учитывая связь между векторами 1
n , b

n , получаем соотношения [7] 
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где ][ 1
nK , ][ b

nK  – матрицы жесткости и 1
nP ; b

nP  – векторы узловых сил ДвКЭ b
nV , отвечающие со-

ответственно декартовым системам координат 1111 zyxO  и Oxyz . 

 Полную потенциальную энергию mW  МнКЭ mV  представляем выражением 
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где N  – общее число ДвКЭ b
nV . 

Используя (11), строим равенство 
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где ][ m
nA  – квадратная матрица размерности 192192 . 

Подставляем (13) в функционал (12) и, минимизируя его, получим 
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где ][ mK , mF  – матрица жесткости и вектор узловых сил сложного МнКЭ mV . 

Замечание 4. Криволинейные лагранжевые сложные МнКЭ n-го ( 1n ) порядка с неоднород-
ной (микронеоднородной) структурой строим по процедуре, которая аналогична процедуре п. 2. 

3. Результаты расчетов. В качестве модельной задачи рассмотрим расчет композитной кон-

сольной прямоугольной в плане панели 0V  волокнистой структуры (рис. 6). Панель 0V  расположе-

на в декартовой системе координат Oxyz , при 0y  имеем 0 wvu , т.е. панель жестко за-

креплена. Волокна параллельны оси Oy  и по сечению панели расположены равномерно. Базовое 

разбиение 0R  панели 0V  состоит из однородных элементов eV  1-го порядка с характерными раз-

мерами 
e
z

e
y

e
x hhh   (рис. 1). Разбиение 0R  учитывает неоднородную структуру панели и порож-

дает криволинейную мелкую сетку ah . Для узлов мелкой сетки введена целочисленная система 

координат ijk  (рис. 6) размерности 1914573  . Двухсеточная модель панели 0V  состоит из ла-

гранжевых ДвКЭ d
nV  3-го порядка с характерными размерами 

e
z

e
y

e
x hhh 181818   (рис. 7), которые 

построены по процедуре п. 1.3 и мелкие сетки которых имеют размерность 191919  , 
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0,...,1 Nn  , 0N  – общее число ДвКЭ d
nV . Для панели 0V  320 N . На рисунке 7 узлы крупной 

сетки aH  ДвКЭ d
nV  отмечены точками (64 узла).  

 

 
Рис. 6. Панель 0V                                                  Рис. 7. ДвКЭ d

nV  

  

Базовые разбиения ДвКЭ d
nV  состоят из КЭ eV  (см. рис. 1). ДвКЭ d

nV  расположен в декар-

товой системе координат 1111 zyxO , причем ось 11 yO  параллельна оси Oy  декартовой системы 

координат Oxyz  панели (рис. 6). Область ДвКЭ d
nV  содержит 27 суперэлементов s

eG  с характер-

ными размерами 
e
z

e
y

e
x hhh 666  . На рисунке 8 представлено сечение суперэлемента s

eG  в плос-

кости, перпендикулярной оси 11 yO . Сечение представлено сеткой базового разбиения, сечения 

волокон с характерными размерами e
z

e
x hh   заштрихованы. В узлах мелкой сетки с целочисленны-

ми координатами kji ,, , где )1(61  i , 7,...,1 , )1(673  j , 13,...,1 , 19k , на 

панель действуют вертикальные силы 1,0q . На рисунке 6 поверхность панели, на которой за-

дано нагружение, заштрихована. Модуль Юнга связующего материала равен 1, волокна – 10, ко-

эффициент Пуассона для волокна и связующего материала равен 0,3. Радиус внутренней поверх-

ности панели равен 25, радиус внешней поверхности – 30, толщина панели 5h , длина панели 

40L  (рис. 6). Угол раствора панели равен 4/ . 

 

                                                    
                                         

Рис. 8. Сечение суперэлемента s
eG  
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Результаты расчетов панели 0V  показывают, что максимальное эквивалентное напряжение 

(перемещение) двухсеточной дискретной модели hR  панели 0V , состоящей из ДвКЭ d
nV , отлича-

ется от максимального эквивалентного напряжения (перемещения) базовой дискретной модели 0R  

на %61,3  (на %73,2 ). Размерность базовой модели 0R  панели 0V  равна 599184, ширина ленты 

системы уравнений (СУ) МКЭ равна 8447. Двухсеточная дискретная модель hR  панели 0V  имеет 

3744 узловых неизвестных (т.е. в 160 раз меньше, чем неизвестных в базовой модели 0R ), ширина 

ленты СУ МКЭ равна 1031 (в 8 раз меньше ширины ленты СУ МКЭ модели 0R ). Реализация МКЭ 

для двухсеточной модели hR  требует в 1310 раз меньше объема памяти ЭВМ, чем для базовой 

модели 0R . Эквивалентные напряжения определяются по 4-й теории прочности. 

Заключение. В данной работе показаны процедуры построения криволинейных лагранжевых 
ДвКЭ и сложных МнКЭ, которые используем для расчета трехмерных упругих композитных цилин-
дрических панелей и оболочек с различными коэффициентами наполнения. Достоинства предлага-
емых элементов состоят в следующем. Лагранжевые ДвКЭ и сложные МнКЭ в панелях и оболоч-
ках:  

   описывают трехмерное напряженное состояние; 
   учитывают неоднородную и микронеоднородную структуры, порождают двух- и многосе-

точные дискретные модели, размерности которых в 43 1010   раз меньше размерностей базовых 
моделей; 

   учитывают сложный характер закрепления. 
 Отметим, что напряжения можно определить в любом компоненте неоднородных структур 

панелей и оболочек. Реализация МКЭ для двух- и многосеточных дискретных моделей требует в 
32 1010   раз меньше временных затрат, чем для базовых моделей. 
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