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РАСЧЕТ ТОНКИХ ПЛАСТИН И ОБОЛОЧЕК С ПРИМЕНЕНИЕМ  МНОГОСЕТОЧНЫХ КОНЕЧНЫХ  

ЭЛЕМЕНТОВ СО СВОБОДНЫМИ ГРАНИЦАМИ* 
 

 В статье рассматриваются многосеточные конечные элементы со свободной границей для 
трехмерного анализа деформирования однородных и композитных тонких упругих пластин и оболочек 
постоянной толщины. Конечные элементы описывают трехмерное напряженное состояние в пластинах 
и оболочках, учитывают их неоднородную структуру, сложный характер закрепления и нагружения, по-
рождают дискретные модели малой размерности.  
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CALCULATION OF THIN PLATES AND SHELLS USING MULTI-GRID FINITE ELEMENTS WITH FREE 
BOUNDARIES 

  
The multi-grid finite elements with free boundary for the deformation three-dimensional analysis of the defor-

mation of homogeneous and composite thin elastic plates and shells with constant thickness are considered in the arti-
cle. Finite elements describe the three-dimensional strained state in plates and shells, take into account their heteroge-
neous structure, the complex character of fastening and loading, generate discrete models of small dimension.  
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При расчете тонких однородных (композитных) пластин и оболочек постоянной толщины используют 

приближенные теории [1, 2, 3]. Общий недостаток этих теорий заключается в том, что в их основе лежат ги-
потезы, которые порождают неустранимую погрешность в решениях. Существующие теории оболочек и па-
нелей не учитывают сложный характер их закрепления и нагружения (например, закрепление и нагружение 
оболочки, панели частично по толщине), не всегда точно описывают поведение панелей и оболочек под 
действием локальных нагружений.  

В данной работе при анализе по методу конечных элементов (МКЭ) деформирования однородных и 
композитных тонких пластин и оболочек предложены многосеточные конечные элементы (МнКЭ) со свобод-
ной границей, в которых реализуется трехмерное напряженное состояние. Многосеточные конечные эле-
менты (КЭ) формы прямоугольного параллелепипеда для анализа деформирования упругих тел однородной 
и неоднородной структуры рассмотрены в работах [4, 5]. Существуют два типа МнКЭ [4]. Для проектирова-
ния m-сеточного однородного и композитного конечного элемента используются m  вложенных узловых се-
ток. Самая мелкая сетка порождена базовым разбиением, которое учитывает форму и неоднородную струк-
туру m-сеточного КЭ. Для m-сеточного КЭ первого типа 1−m  сетка определяются на всей его области, для 
m-сеточного второго типа – на его границе. С помощью аппроксимирующих функций перемещений, постро-
енных на крупных сетках, все неизвестные мелкой сетки МнКЭ первого типа выражаются через узловые не-
известные крупных сеток. При построении МнКЭ второго типа вначале с помощью метода конденсации [6] 
исключаются неизвестные внутренних узлов мелкой сетки. Затем неизвестные граничных узлов мелкой сет-
ки МнКЭ представляются через узловые неизвестные крупных сеток.  

Расчеты показывают, что в дискретных моделях тонких однородных и композитных пластин и оболо-
чек постоянной толщины целесообразно по толщине пластины, оболочки использовать один МнКЭ, т.е. тол-
щина МнКЭ равна толщине пластины, оболочки. В этом случае верхняя (нижняя) граница многосеточного 
элемента совпадает с верхней (нижней) границей пластины, оболочки. Используя метод конденсации, узло-
вые неизвестные мелкой сетки исключаем внутри области, на верхней и нижней границах многосеточного 
элемента. Крупные сетки определяем на боковых границах МнКЭ. С помощью аппроксимаций перемещений, 
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построенных на крупных сетках, выражаем неизвестные узлов мелкой сетки, лежащих на боковых границах 
МнКЭ, через узловые неизвестные крупных сеток. 

Процедура построения МнКЭ со свободными границами. Многосеточный конечный элемент, у ко-
торого с помощью метода конденсации неизвестные мелкой сетки исключаются во всех ее внутренних узлах 
и в граничных узлах, лежащих на той части (свободной) границы данного МнКЭ, которая совпадает с частью 
не закрепленной границей тела, для краткости будем называть МнКЭ со свободной границей. На рис. 1, а, б 
свободные верхние и нижние границы ABCD , KNML  пластинчатого и оболочечного МнКЭ совпадают 
соответственно с верхними и нижними поверхностями пластины, оболочки постоянной толщины h , 

CMh = . На рисунке 1, а боковые границы пластинчатого МнКЭ есть прямоугольники ADLK , AKNB , 
,BCMN  ,LDCM  оболочечного МнКЭ (рис. 1, б) – прямоугольники AKNB , LDCM  и криволинейные 

грани ADLK , BCMN .  

 
 

Рис. 1. Пластинчатый МнКЭ (а)  оболочечный МнКЭ (б) 
 
Процедуру построения МнКЭ со свободными границами покажем на примере построения пятисеточ-

ного КЭ (ПтКЭ) pV  формы прямоугольного параллелепипеда, который применяется для расчета тонких од-
нородных (композитных) пластин постоянной толщины h  (рис. 1, а). Область ПтКЭ pV  представляем мел-
ким (базовым) разбиением, состоящим из однородных известных односеточных КЭ eV  1-го порядка формы 
куба [7]. Базовое разбиение оболочечного МнКЭ состоит из однородных криволинейных шестигранных КЭ              
1-го порядка [6, 7]. Функции перемещений, напряжений и деформаций КЭ eV  удовлетворяют закону Гука и 
соотношениям Коши, которые отвечают трехмерной задачи теории упругости [7], т.е. в КЭ eV  и, следова-
тельно, в ПтКЭ pV  реализуется трехмерное напряженное состояние. Базовое разбиение учитывает неод-
нородную структуру ПтКЭ pV  и порождает мелкую сетку hV . С помощью метода конденсации исключаем 
неизвестные во внутренних узлах мелкой сетки hV  и во внутренних узлах свободных границ ABCD  и 
KNML  (рис. 1, а, б). В результате получаем суперэлемент sV , узловые неизвестные которого определя-
ются только в узлах мелкой сетки боковых граней. Полную потенциальную энергию sП  суперэлемента sV  
представим в матричной форме:  

 
                                             s
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где ][ sK – матрица жесткости суперэлемента sV ; ss qP , – векторы узловых сил и неизвестных суперэле-
мента sV ; T  – транспонирование.  

 На четырех боковых гранях (рис. 1, а) грани ADLK , AKNB , BCMN , LDCM ) суперэлемента 

sV  определяем две крупные различные прямоугольные узловые сетки iV0 , 4,...,1=i , вложенные в мелкую 

сетку hV . В общем случае крупные сетки iV0  имеют различное число узлов либо различные шаги по сторо-
нам KN , KL , NM , LM  (рис. 1, а). Узлы крупных сеток пластичного и оболочечного многосеточных КЭ 
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на рис. 2, а, б отмечены точками. С помощью полиномов Лагранжа [6] на крупной сетке iV0  для перемеще-
ний wvu ,,  строим соответственно аппроксимирующие функции iii wvu ,, , которые запишем в виде 
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где iNβ  – базисная функция β -го узла крупной сетки iV0 ; wvu qqq βββ ,,  – значения функций iii wvu ,,  в       

β -м узле сетки iV0 ; in3  – общее число неизвестных крупной сетки iV0  ( 4,...,1=i ). 

Обозначим через 0q  вектор узловых неизвестных МКЭ всех крупных сеток iV0 , 4,...,1=i . Исполь-
зуя (2), вектор sq  узловых перемещений суперэлемента sV  выражаем через узловые неизвестные вектора 

0q . В результате получим равенство 
 

                                                           0 ][ qq ss A= ,                                                                                (3) 
где ][ sA  – прямоугольная матрица.  
 

        
 

Рис. 2. Крупные сетки МнКЭ: а – пластинчатого; б – оболочечного 
  
Подставляя (3) в выражение (1), из условия 0/ 0 =∂∂ qsП  получаем матричное уравнение 

000  ][ Fq =K ,  

где                      ][A ][][][ s0 s
T

s KAK = ,  s
T

sA PF ][0 = ;                                                                  (4) 

                            00 ],[ FK – матрица жесткости и вектор узловых сил ПтКЭ pV .  
 
При построении ПтКЭ pV  используем одну мелкую сетку hV  и две (в общем случае) различных круп-

ных сетки iV0 , 4,...,1=i . Процедура построения матриц жесткости и векторов узловых сил криволинейных 
оболочечных МнКЭ со свободными границами  аналогична вышеописанной.  

Многосеточные элементы сложной формы. Расчеты показывают, что построение полиномов Ла-
гранжа [6], связанное с операцией последовательных умножений чисел, при больших значениях in  (см. (2)) 
порождает погрешность вычислений ЭВМ, которая приводит к численной неустойчивости решений, постро-
енных по МКЭ. В связи с этим используем локальные аппроксимации [8], суть которых состоит в следующем. 
Области боковых граней МнКЭ представляем непересекающимися подобластями. На подобластях опреде-
ляем (локальные) крупные узловые сетки, вложенные в мелкую сетку. На крупных сетках подобластей стро-
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им локальные аппроксимирующие функции перемещений. На общей границе двух подобластей узлы круп-
ных сеток совпадают. На подобластях прямоугольной формы локальные аппроксимации перемещений стро-
им с помощью полиномов Лагранжа малого порядка. Грани пластинчатых и оболочечных МнКЭ сложной 
формы (в плане) представляем подобластями вида треугольных, четырехугольных КЭ 1-, 2- и 3-го порядков, 
узловые сетки которых являются локальными крупными сетками. На рис. 2, а, б узлы локальных крупных 
сеток боковых границ отмечены точками. Криволинейная граница ADLK  (рис. 2, б) представлена четырех-
угольными КЭ второго порядка (имеют 8 узлов), узловые сетки которых являются локальными крупными сет-
ками. На боковых прямоугольных гранях ABNK , DCML  (рис. 2, б) для аппроксимации перемещений 
можно использовать полиномы Лагранжа. На рисунке 3 показано разбиение боковых границ пластинчатого и 
оболочечного МнКЭ сложной формы на подобласти, на которых определяются крупные локальные сетки. 

 

 
 

Рис. 3. МнКЭ сложной формы: а – пластинчатый: б – оболочечный 
 
Особенности предлагаемых пластинчатых и оболочечных МнКЭ состоят в том, что они имеют две 

свободные верхние и нижние границы (границы ABCD  и KLMN (рис. 1, а, б)) и при этом неизвестные 
определяются только в узлах крупных сеток, которые построены на боковых гранях МнКЭ (рис. 2, а, б).  

Достоинства предлагаемых конечных элементов состоят в следующем. Пластинчатые и оболочечные 
многосеточные КЭ со свободными границами: 

– описывают трехмерное напряженное состояние в тонких пластинах и оболочках;  
– учитывают сложную форму, сложные условия закрепления и локальный характер нагружения тонких 

пластин и оболочек; 
– учитывают неоднородную структуру тонких пластин и оболочек; 
– порождают дискретные модели тонких пластин и оболочек, размерности которых на несколько по-

рядков меньше размерностей их базовых дискретных моделей. Поэтому реализация МКЭ для дискретных 
моделей тонких пластин и оболочек (состоящих из МнКЭ со свободными границами) требует меньше вре-
менных затрат и памяти ЭВМ, чем для базовых моделей.  
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