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МЕТОД АНАЛИЗА ЛОГИСТИЧЕСКИХ МОДЕЛЕЙ  
 

Предлагается метод анализа логистических моделей, описанных в терминах теории графов. Ал-
горитмы анализа моделей, построенные в соответствии с предлагаемым методом, приводят к значи-
тельному снижению вычислительной сложности поставленных задач. 
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S.A. Tarasov, Yu.S. Tarasov 
 

METHOD OF THE LOGISTIC MODEL ANALYSIS  
 

The analysis method for the logistic models described in terms of the graph theory is offered. The model 
analysis algorithms, developed in accordance with the proposed method, lead to the considerable reduction of the 
set task computing complexity. 

Key words: algorithms, model analysis, logistics, graphs. 
 
 
Введение. В настоящее время, в связи с развитием информационно-вычислительных систем, возни-

кает возможность управлять большими и сложными логистическими системами. Возрастающая сложность 
логистических систем делает необходимым совершенствование математических инструментов, упрощаю-
щих процесс разработки таких систем. Большинство существующих инструментов базируются на представ-
лении систем в виде графов. Преимущества отображения исследуемых моделей в виде графов изложены во 
многих работах, в том числе в [2, 3]. В настоящее время существуют методы для решения таких задач, как 
нахождение кратчайшего пути, поиск остова наименьшей цены, нахождение максимального потока и др., 
однако не всегда данные методы могут быть применены к современным логистическим системам, так как 
попытки их применения прводят к неприемлемо большим объемам вычислений.  

В данной работе представлена новая концепция, на основании которой могут быть разработаны ме-
тоды конструирования и анализа современных логистических моделей с приемлемой вычислительной слож-
ностью, а также методы решения таких задач, как формирование транспортных сетей, в которых источником 
и(или) получателем является множество пунктов внутри сети многопродуктовых потоков. 

В дальнейших работах будут приведены алгоритмы, построенные на использовании конструкций, по-
лученных в результате выполнения алгоритмов, описанных ниже. В настоящей работе рассматриваются 
алгоритмы выбора вершины (полюса) по выбранной шкале весов и построения некоторого множества осто-
вов с корнем в данной вершине.  
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Определения 
 

Графом 𝐺 называется пара множеств (𝑉,𝐸), где 𝑉 – непустое конечное множество, а 𝐸 – произволь-
ное множество, образованное произвольными парами элементов из 𝑉. Элементы множества 𝑉  будем 
называть вершинами графа, а элементы множества 𝐸 – ребрами графа. 

Вершины 𝑣 и 𝑣′ называются смежными (инцидентными), если образуемая ими пара  (𝑣, 𝑣 ′) ∈ 𝐸. 
Петлей называется ребро, соединяющее вершину саму с собой. 
Кратными называются различные ребра, соединяющие две данных вершины. 
Простой граф – граф, не содержащий в себе петель и кратных ребер. 
Степень вершины 𝑣 – число ребер, инцидентных с вершиной 𝑣, обозначается deg (𝑣). 
Маршрутом в графе 𝐺 называется чередующаяся последовательность вершин и ребер 

𝑣0, 𝑒1,𝑣1, … , 𝑣𝑡−1, 𝑒𝑡 ,𝑣𝑡, в которой 𝑒𝑖 = (𝑣𝑖−1, 𝑣𝑖), где (1 ≤ 𝑖 ≤ 𝑡). 
Длиной маршрута называют количество содержащихся в нем ребер. 
Цепь – маршрут без повторяющихся ребер. 
Вершины 𝑣 и 𝑣′ называются связанными, если существует маршрут такой, что 𝑣0 = 𝑣 и 𝑣𝑡 = 𝑣′. От-

метим очевидное следствие данного определения. Пусть 𝑣, 𝑣 ′, 𝑣′′ – вершины графа, при этом если пары 
вершин (𝑣, 𝑣 ′) и ( 𝑣 ′, 𝑣′′) являются связанными, то вершины 𝑣, 𝑣′′ также являются связанными. 

Матрица Кирхгофа [1] – одно из представлений графа с помощью матрицы. Пусть 𝐺 простой граф с 
|𝑉(𝐺)| = 𝑛, тогда матрица Кирхгофа 𝐾 = (𝑘𝑖,𝑗)𝑛×𝑛,  

где                                   𝑘𝑖,𝑗 = �
deg(𝑣𝑖)        если 𝑖 = 𝑗                   
−1                если (𝑣𝑖 ,𝑣𝑗) ∈ 𝐸(𝑔)
0                   иначе.                          

  

Определитель матрицы 𝐴 = �𝑎𝑖,𝑗�𝑛×𝑛
 равен ∑ (−1)1+𝑗 × 𝑎1,𝑗 × 𝑀1,𝑗

𝑛
𝑗=1  

Дополнительный минор 𝑀𝑖,𝑗  – определитель матрицы, полученной из исходной путем вычеркивания 
𝑖-й строки и 𝑗-го столбца. 

Алгебраическим дополнением 𝑎𝑖,𝑗  матрицы 𝐴 называется число, равное (−1)𝑖+𝑗𝑀𝑖𝑗 , где 𝑀𝑖𝑗  – до-
полнительный минор. 

 
Полюсы и срезы в графах 

 
Введем вспомогательное понятие – срез вершины графа. Фиксируем произвольную вершину 𝑣 графа 

𝐺. Множество всех смежных вершин для 𝑣 назовем первым срезом графа 𝐺 для вершины 𝑣. Обозначим это 
множество 𝑆1(𝑣). Во второй срез 𝑆2(𝑣) включим все смежные вершины из 𝑆1(𝑣), исключая саму вершину 𝑣 
и вершины из 𝑆1(𝑣). Далее продолжаем описанный процесс и формируем очередной срез из смежных вер-
шин предыдущего среза, исключая саму вершину 𝑣 и все вершины, включенные в какой-либо из ранее 
сформированных срезов. Процесс формирования срезов естественно заканчивается, когда не останется ни 
одной не включенной в срезы вершины. Множество всех срезов для вершины 𝑣 графа 𝐺 обозначим 𝑆(𝑣). 
По аналогии |𝑆(𝑣)| – количество срезов для вершины 𝑣.  

Полный массив всех срезов для всех вершин графа обозначим 𝑀 и разберем подробнее его структу-
ру. Первый индекс структуры 𝑀 нумерует список срезов для каждой вершины. Срезы упорядочены в соот-
ветствии с вышеприведенным определением, то есть первым идет  𝑆1(𝑣𝑖),  вторым 𝑆2(𝑣𝑖) и т.д., где i – 
индекс текущей строки в структуре 𝑀. 

Индексом полюсности по выбранной шкале весов для вершины 𝑣 графа 𝐺 называется величина, яв-
ляющаяся номером среза, в котором сумма весов всех вершин данного среза имеет максимальное значе-
ние. 

Полюсом графа по выбранной шкале весов назовем вершину с минимальным значением индекса по-
люсности. 

Понятно, что анализа свойств вершин рассматриваемого графа далеко недостаточно для решения 
прикладных задач. При наличии в модели противоположных полюсов (к примеру, производство-
потребление) необходимо рассматривать также и коммуникационную компоненту, в которую могут входить 
транспортные сети, отдельные маршруты, одно- и много-продуктовые потоки. Для использования при реше-
нии таких задач предлагается алгоритм формирования веерных остовов. 
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Веерные остовы 
 

Характерной особенностью алгоритма является построение не одного остова, а множества неповто-
ряющихся веерных остовов относительно заданной вершины графа.  

Определим следующие функции: 
1. 𝑓1(𝑆(𝑣), 𝑘,𝑛) – возвращает множество ребер, инцидентных с 𝑛-й вершиной в 𝑘-м срезе объекта 

𝑆(𝑣) и вершинами, расположенными в срезе 𝑘-1 объекта 𝑆(𝑣).  
2. 𝑓2(𝑆(𝑣), 𝑖) – возвращает число вершин в 𝑖-м срезе объекта 𝑆(𝑣). 
3. 𝑓3(𝑆(𝑣), 𝑘) = ∏ 𝑓1(𝑆(𝑣), 𝑘,𝑛)𝑓2(𝑆(𝑣),𝑘)

𝑛=1  – возвращает прямое произведение множеств, получен-
ных при помощи функции 𝑓1 для всех вершин, расположенных в 𝑘-м срезе объекта 𝑆(𝑣). 

4. 𝑓4�𝑆(𝑣)� = ∏ 𝑓3(𝑆(𝑣), 𝑘)2
𝑘=|𝑆(𝑣)|  – возвращает прямое произведение множеств, полученных при 

помощи функции 𝑓3 для всех срезов объекта 𝑆(𝑣), кроме первого. 
Для графа 𝐺(𝑉,𝐸) определим 𝑇(𝑣) = 𝑓4(𝑆(𝑣)), где 𝑣 ∈ 𝑉, тогда элемент 𝑡 ∈ 𝑇(𝑣) является по-

следовательностью ребер графа 𝐺, то есть 𝑡 ⊆ 𝐸. Определим множество 𝑃, такое, что 𝑣 ′ ∈ 𝑃 ↔ �𝑣 ′, 𝑣 ′′� ∈
𝑡, где (𝑣 ′, 𝑣 ′′ ∈ 𝑉) ∧ (�𝑣 ′, 𝑣 ′′� = �𝑣 ′′, 𝑣 ′�). 

Теорема. Граф 𝐺̅(𝑃, 𝑡), остов графа 𝐺(𝑉,𝐸) для ∀𝑡 ∈ 𝑇(𝑣) и ∀𝑣 ∈ 𝑉, где 𝐺 – неориентированный 
связный граф. 

Доказательство теоремы сводится к доказательству следующих утверждений: 
1. 𝑃 = 𝑉. 
2. 𝑣 ′ и 𝑣′′ являются связанными для любых 𝑣 ′, 𝑣 ′′ ∈ 𝑃. 
3. Граф 𝐺̅ не содержит циклов. 
Доказательство утверждения 1. Предположим, что 𝑃 ≠ 𝑉. В силу определения множества 𝑃, 

𝑃 ≠ 𝑉 ↔ (∃𝑣′ ∈ 𝑉 ∧ 𝑣′ ∉ 𝑃), что равносильно утверждению 𝑃 ⊂ 𝑉, и не одно ребро, инцидентное вер-
шине 𝑣′, не содержится в 𝑡. Для любой вершины, включенной в объект 𝑆(𝑣), в 𝑡 содержится как минимум 
одно ребро, инцидентное с ним. В силу определения объекта 𝑆(𝑣) в него входят все вершины графа при 
условии, что граф связный. Таким образом, мы приходим к противоречию между утверждениями 𝑣′ ∉
𝑆(𝑣) ∧ 𝑣′ ∈ 𝑉 и ∀𝑎 ∈ 𝑉 → 𝑎 ∈ 𝑆(𝑣). 

Доказательство утверждения 2. Данное доказательство следует из доказательства первого утвер-
ждения. Пусть 𝑣′ и 𝑣′′ – произвольные вершины графа 𝐺. Очевидно, что 𝑣 ′ ∈ 𝑉, 𝑣 ′′ ∈ 𝑉, 𝑣 ′ ∈ 𝑃, 𝑣 ′′ ∈ 𝑃, 
𝑣 ′ ∈ 𝑆(𝑣), 𝑣 ′′ ∈ 𝑆(𝑣). В силу конструктивного определения 𝑡, данное множество ребер обеспечивает связ-
ность любой вершины, расположенной в 𝑖-м срезе объекта 𝑆(𝑣), с какой-либо вершиной из 𝑖-1 среза, где 
𝑖 ∈ {2,3, … , |𝑆(𝑣)|}. Таким образом, множество ребер 𝑡 обеспечивает связность любой вершины с верши-
ной 𝑣 (вершиной, расположенной в первом срезе объекта 𝑆(𝑣)). Из связности графа 𝐺 следует, что если 
любая вершина связана с вершиной 𝑣, то связаны любые вершины. Что и требовалось доказать. 

Доказательство утверждения 3. Предположим, что граф 𝐺̅ содержит циклы. Из этого следует, что в 
𝑡 ⊃ �𝑒 ′, 𝑒 ′′�, такие, что (𝑒 ′ = (𝑣 ′, 𝑣 ′′′)) ∧ (𝑒 ′′ = = �𝑣 ′′, 𝑣 ′′′�) ∧ ({𝑒 ′, 𝑒 ′′} ⊂ 𝐸) ∧ (�𝑣 ′, 𝑣 ′′, 𝑣 ′′′� ⊂ 𝑉) ∧ (𝑣 ′ ≠
𝑣 ′′ ≠ 𝑣 ′′′), при этом 𝑣′′′ расположено в 𝑖-м срезе объекта 𝑆(𝑣), а 𝑣′ и 𝑣′′ в 𝑖-1 срезе. Что противоречит описа-
нию функции 𝑓3, используемой при формировании 𝑡. Результатом вычисления функции 𝑓3 в рассматрива-
емой ситуации будет множество, содержащее в себе объекты 𝑡′ ⊇ 𝑒′ и 𝑡′′ ⊇ 𝑒′′, при том, что 𝑡 ′ ∩ 𝑡 ′′ == ∅. 
Таким образом, утверждение 3 доказано. 

Объединение доказательств утверждений 1, 2, 3 является доказательством теоремы. 
Пример. Для иллюстрации работы алгоритма возьмем граф 𝐺, графическое представление которого 

изображено на рисунке. 
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В соответствии с графическим представлением определим множества 
𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10} и 𝐸 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑟9, 𝑟10, 𝑟11, 𝑟12, 𝑟13}, 
где 𝑟1 = (𝑣1, 𝑣2), 𝑟2 = (𝑣1, 𝑣3), 𝑟3 = (𝑣2, 𝑣4), 𝑟4 = (𝑣3, 𝑣4), 𝑟5 = (𝑣3, 𝑣6), 𝑟6 = (𝑣4? 𝑣7), 𝑟7 =
(𝑣2, 𝑣5), 𝑟8 = (𝑣5, 𝑣9), 𝑟9 = (𝑣6, 𝑣7), 𝑟10 = (𝑣7, 𝑣8), 𝑟11 = (𝑣6, 𝑣8), 𝑟12 = (𝑣8, 𝑣10), 𝑟13 =
(𝑣9, 𝑣10). При этом будем считать �𝑣, 𝑣 ′� = (𝑣 ′, 𝑣). Построим множество веерных графов относительно 
вершины 𝑣1. В качестве исходных данных необходимо определить объект 𝑆(𝑣1).  

𝑆(𝑣1) = 𝑣1 𝑣2
𝑣3 

𝑣4
𝑣5
𝑣6

 
𝑣7
𝑣8
𝑣9

 𝑣10 

Таким образом: 
𝑇(𝑣1) = 𝑓3(𝑆(𝑣1), 5) × 𝑓3(𝑆(𝑣1), 4) × 𝑓3(𝑆(𝑣1), 3) × 𝑓3(𝑆(𝑣1), 2). 
𝑓3(𝑆(𝑣1), 5) = 𝑓1(𝑆(𝑣1), 5,1) = {𝑟12, 𝑟13} × ∅ = {〈𝑟12〉, 〈𝑟13〉}. 

𝑓3(𝑆(𝑣1), 4) = 𝑓1(𝑆(𝑣1), 4,1) × 𝑓1(𝑆(𝑣1), 4,2) × 𝑓1(𝑆(𝑣1), 4,3)={𝑟6, 𝑟9} × 
× {𝑟10, 𝑟11} × {𝑟8} = {〈𝑟6, 𝑟10, 𝑟8〉, 〈𝑟6, 𝑟11, 𝑟8〉, 〈𝑟9, 𝑟10, 𝑟8〉, 〈𝑟9, 𝑟11, 𝑟8〉}. 

𝑓3(𝑆(𝑣1), 3) = 𝑓1(𝑆(𝑣1), 3,1) × 𝑓1(𝑆(𝑣1), 3,2) × 𝑓1(𝑆(𝑣1), 3,3)={𝑟3, 𝑟4} × {𝑟7} × × {𝑟5} =
{〈𝑟3, 𝑟7, 𝑟5〉, 〈𝑟4, 𝑟7, 𝑟5〉}. 

𝑓3(𝑆(𝑣1), 2) = 𝑓1(𝑆(𝑣1), 2,1) × 𝑓1(𝑆(𝑣1), 2,2) = {𝑟1} × {𝑟2} = {〈𝑟1, 𝑟2〉} 
𝑇(𝑣1) = {〈𝑟12〉, 〈𝑟13〉} × {〈𝑟6, 𝑟10, 𝑟8〉, 〈𝑟6, 𝑟11, 𝑟8〉, 〈𝑟9, 𝑟10, 𝑟8〉, 〈𝑟9, 𝑟11, 𝑟8〉} × 

× {〈𝑟3, 𝑟7, 𝑟5〉, 〈𝑟4, 𝑟7, 𝑟5〉} × {〈𝑟1, 𝑟2〉} = {〈𝑟12, 𝑟6, 𝑟10, 𝑟8, 𝑟3, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟12, 𝑟6, 𝑟10, 𝑟8, 
𝑟4, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟12, 𝑟6, 𝑟11, 𝑟8, 𝑟3, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟12, 𝑟6, 𝑟11, 𝑟8, 𝑟4, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟12, 
𝑟9, 𝑟10, 𝑟8, 𝑟3, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟12, 𝑟9, 𝑟10, 𝑟8, 𝑟4, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟12, 𝑟9, 𝑟11, 𝑟8, 𝑟3, 𝑟7, 𝑟5, 𝑟1, 
𝑟2〉, 〈𝑟12, 𝑟9, 𝑟11, 𝑟8, 𝑟4, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟13, 𝑟6, 𝑟10, 𝑟8, 𝑟3, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟13, 𝑟6, 𝑟10, 𝑟8, 𝑟4, 
𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟13, 𝑟6, 𝑟11, 𝑟8, 𝑟3, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟13, 𝑟6, 𝑟11, 𝑟8, 𝑟4, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟13, 𝑟9, 
𝑟10, 𝑟8, 𝑟3, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟13, 𝑟9, 𝑟10, 𝑟8, 𝑟4, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉, 〈𝑟13, 𝑟9, 𝑟11, 𝑟8, 𝑟3, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉,

〈𝑟13, 𝑟9, 𝑟11, 𝑟8, 𝑟4, 𝑟7, 𝑟5, 𝑟1, 𝑟2〉} 
Сформировать множество 𝑃 на основе любого элемента из 𝑇(𝑣1) не представляет трудности. В ре-

зультате получается 16 остовов.  
 

Заключение 
 

Представленный метод не формирует множество всех остовов графа. Для понимания этого факта 
можно рассмотреть результат вычисления 𝑇(𝑣6). Формирование 𝑇(𝑣6) производится на основе 𝑆(𝑣6) =

𝑣6 
𝑣3
𝑣7
𝑣8

 
𝑣1
𝑣4
𝑣10

 𝑣2
𝑣9 𝑣5, так как вершины 𝑣7 и 𝑣8 расположены в одном срезе, ни один элемент из 𝑇(𝑣6) не бу-

дет содержать в себе ребро 𝑟10. Также на основе рассматриваемого графа построим остов 𝐺̅(𝑉,𝐸�) где 
𝐸� = {𝑟2, 𝑟3, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑟9, 𝑟12, 𝑟13}. Данный остов не будет являться элементом множества, образо-
ванного объединением множеств веерных остовов, для всех вершин графа. Для полноты представления 
приведем расчет алгебраического дополнения к элементу матрицы Кирхгофа, которое, согласно теореме 
Кирхгофа-Трента[1], равно числу всех возможных остовов в графе. Матрица Кирхгофа для рассматриваемо-
го графа имеет следующий вид: 

 

𝐾(𝐺) =

�

�

�

2 −1 −1 0 0 0 0 0 0 0
−1 2 0 −1 −1 0 0 0 0 0
−1 0 3 −1 0 −1 0 0 0 0
0 −1 −1 3 0 0 −1 0 0 0
0 −1 0 0 2 0 0 0 −1 0
0 0 −1 0 0 3 −1 −1 0 0
0 0 0 −1 0 −1 3 −1 0 0
0 0 0 0 0 −1 −1 3 0 −1
0 0 0 0 −1 0 0 0 2 −1
0 0 0 0 0 0 0 −1 −1 2

�

�

�

. 

 
Алгебраическое дополнение к элементу 𝑘1,1 = (−1)1+1 × 𝑀1,1 = 68. Таким образом, мощность мно-

жества всех возможных остовов равна 68. Это значит, что при анализе коммуникационной компоненты модели, 
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соответствующей графу, рассмотренному в примере, нами не рассматривались 76 % возможных комбинаций. 
Именно исключение из рассмотрения комбинаций, заведомо не содержащих решения поставленной задачи, 
является одним из главных принципов предлагаемой концепции. В последующих работах будут приведены 
алгоритмы решения таких задач, как нахождение кратчайшего пути, поиск остова наименьшей цены, нахожде-
ние максимального потока, с применением композиции веерных остовов, а также их сравнение с уже извест-
ными алгоритмами решения указанных задач. Изложение этих алгоритмов и моделей в одной работе просто 
невозможно в связи с ограничениями, предъявляемыми редакциями научных журналов.  

Авторы выражают благодарность заведующему кафедрой логистики Красноярского государ-
ственного аграрного университета д-ру экон. наук В.Ф. Лукиных за постановку задачи [4,5], для решения 
которой и была разработана концепция полюсов и веерных остовов. 
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